OTOYOLLAR
Kategoriler
Markalar

KUANTUM

KUANTUM

KUANTUM

Kuantum mekaniği

Vikipedi, özgür ansiklopedi
 
 
 
Gezinti kısmına atla Arama kısmına atla
 
Belirli enerji seviyelerinde (aşağıya doğru artarak: n=1,2,3,...) ve açısal momentum'lardaki (sağa doğru artarak: s, p, d,...) bir hidrojen atomu elektronunun dalga fonksiyonları. Daha parlak olan bölgeler elektronun pozisyonu için daha yüksek olasılık genliğine işaret ediyor.

Kuantum mekaniği; madde ve ışığın, atom ve atomaltı seviyelerdeki davranışlarını inceleyen bir bilim dalı.[1] Nicem mekaniği [2] veya dalga mekaniği adlarıyla da anılır.[3] Kuantum mekaniği; moleküllerin, atomların ve bunları meydana getiren elektron, proton, nötron, kuark, gluon gibi parçacıkların özelliklerini açıklamaya çalışır.[1] Çalışma alanı, parçacıkların birbirleriyle ve ışık, x ışını, gama ışını gibi elektromanyetik radyasyonlarla olan etkileşimlerini de kapsar.[1]

İngilizcedeki karşılığı quantum, Latince 'quantus' (ne kadar, ne büyüklükte) sözcüğünden gelir[4] ve kuramın belirli fiziksel nicelikler için kullandığı kesikli birimlere gönderme yapar. İngilizce 'mechanics' sözcüğü ise "bir şeyin çalışma prensibi" anlamına gelir.[5] Kuantum mekaniğinin temelleri 20. yüzyılın ilk yarısında Max Planck, Albert Einstein, Niels Bohr, Werner Heisenberg, Erwin Schrödinger, Max Born, John von Neumann, Paul Dirac, Wolfgang Pauli gibi bilim insanlarınca atılmıştır. Belirsizlik ilkesi, anti madde, Planck sabiti, kara cisim ışınımı, dalga kuramı, Kuantum alan kuramı gibi kavram ve kuramlar bu alanda geliştirilmiş ve klasik fiziğin sarsılmasına ve değiştirilmesine sebep olmuştur.

Tarihçe

Klasik mekanik çok başarılı olmasına karşın, 1800'lü yılların sonlarına doğru, kara cisim ışıması, tayf çizgileri, fotoelektrik etki gibi birtakım olayları açıklamada yetersiz kalmıştır. Açıklamaların yanlışlığı bilim adamlarının yetersizliğinden değil aksine klasik mekaniğin yetersizliğinden kaynaklanıyordu. En yalın halde klasik mekanik evreni bir "süreklilik" olarak modelliyordu. Bazı deneysel gözlemleri açıklayabilmek için 1900 yılında Max Planck enerjinin, 1905 yılında ise Albert Einstein ışığın paketçiklerden oluştuğunu, yani süreksizlik gösterdiği varsayımını kullanmak zorunda kaldılar. Bilim adamları uzunca bir süre, bu süreksizlik varsayımlarını klasik mekanik kuramlarından türetmek için uğraştı. Yine aynı yıllarda, atomun iç yapısı üzerine yapılan deneyler bir gerçeği gözler önüne serdi: Ernest Rutherford yaptığı deneyle atomun küçük bir çekirdeğe sahip olduğunu gösterdi.

Elektronun varlığı daha önce 1897 senesinde J.J. Thompsonca ispat edilmişti[6]. Bu durumda, eğer negatif yüklü elektronlar pozitif çekirdeğin etrafında dairesel hareket yapıyorlarsa, çok kısa bir zaman diliminde elektronlar çekirdeğe düşeceklerdi. Bunun sebebi, elektromanyetik teoriye göre açıklanabilir: ivmelenen yükler ışıma yapar, dairesel hareket de ivmeli bir hareket olduğu için, elektron bu ışımayla enerji kaybedecek ve çekirdeğe düşecek, güneş sistemine benzeyen klasik model çökecekti.

Geçici bir çözüm Niels Bohr'dan geldi. Elektronlar belli kuantizasyon kurallarınca, belli yörüngelerde hareket ediyorlar, enerjileri belli bir değere ulaşmadıkça ışıma yapamıyorlar bu sayede sistem dengede durabiliyordu. Bu geçici çözüm küçük atomlarda işe yaradıysa da daha büyük kütlelerde işe yaramıyordu. Bohr atom modeline, modeli deneylere uydurulmak için birçok yama yapıldı. Ne var ki Bohr'un "yamalı bohça"sı 1920'lere gelindiğinde artık iş görmüyordu, tayf çizgilerinin gözlenen yoğunluğunu yanlış veriyor, çok elektronlu atomlarda salınım ve emilim dalgaboylarını tahmin etmede başarısız oluyor, atomik sistemlerin zamana bağlı hareket denklemini vermedeki başarısızlığı gibi birkaç konuda daha gerçekleri gösteremiyordu.

Kuantum mekaniğini Planck doğurduysa, bebekliğinin sonu da De Broglie ile gelmiştir. Louis de Broglie; birçok elçi, bakan ve Dük yetiştirmiş, aristokrat bir Fransız ailesinin çocuğuydu. Tarih eğitimi gördükten sonra fiziğe geçmiş ve 1923'te verdiği doktora tezinde, ışığın hem dalga hem de parçacık karakteri olmasından esinlenerek, aslında bütün madde çeşitlerinin aynı özelliği gösterebileceğini önerdi. Ortaya koyduğu fikir, Bohr'un "gizemli" yörüngelerini açıklamada başarılı oluyordu.

Işığın girişim ve kırınım yaptığı, yani dalga özelliği gösterdiği, Thomas Young'in yaptığı çift yarık deneyi ile gösterilmişti. Ancak tüm madde parçacıklarının, su dalgaları ile aynı matematiksel özellikleri gösterebileceği beklenmiyordu.

Max Planck 1900 yılında kara cisim ışınımı problemini (morötesi facia diye de anılır), çözmek için

denklemini kullanmıştı. Bu denklem, foton kavramının başlangıcı oldu; çünkü f frekansındaki elektron salınımından oluşan ışığın, klasik mekanikle uyuşmayan bir şekilde, h*f nun sadece tam sayı katlarında kesikli enerjiler (E) taşıyabileceğini varsaymıştı ('h', günümüzde Planck sabiti adıyla anılır). Fotonlar dalga özelliği gösteriyorsa, madde de bu dualiteyi (ikiligi) gösterebilir analojisi çok kuvvetli bir fikir idi. Bunun yanında önemli bir ipucu da Einstein'in birkaç yıl önce özel görelilik ispatında kullandığı Lorentz Dönüşümleri idi.

Buna göre, serbest bir parçacık, yönü k, konumu x, frekansi f ve zaman bağlılığı t olan bir dalga ile ifade edilirse, 2*π*(k*x - f*t) , ve bu faz Lorentz dönüşümlerinde sabit kalacaksa, k vektörü ve f frekansı, x vektorü ve t zamanı gibi dönüşmelilerdi. Diğer bir deyişle, p ve E gibi. Bunun mümkün olabilmesi için, k ve f, p ve E ile aynı bağımlılığa sahip olmalılardı, bu yüzden de onlarla doğru orantılı olmalılardı.

Bu şekilde, fotonlar için E=h*f olduğundan, madde için de,

varsayımlarını yapmak 'doğal' gözükmüştür.

Bu varsayıma ek olarak, de Broglie, herhangi bir kapalı yörüngenin 1/|k| nın tam katı olması varsayımını da kullanarak, deneysel olarak gözlenen, ve Sommerfeld ve Bohr tarafından "kuantize olma şartları" olarak anılan şartları, matematiksel olarak kolayca türetti. Bu türetme gayet gizemli bir şekilde doğru sonuçlar verince (Davisson ve Germer, 1927 yılında Bell Laboratuvarlarında gerçekleştirdikleri deneyle, elektronların da aynı ışık gibi girişim yaptığını ortaya koydular. Deney 1924'te de Brogli tarafından önerilmişti) insanlar deneysel olarak başka şeyleri tahmin etmesini de beklediler.

Elbette yanıldılar çünkü bu şartlar serbest ışık parçaları için oluşturulan varsayımların, çekirdeğe bağlı elektronlar için uyarlanmasıydı ve çok ileri götürülmemesi gerekiyordu.

Ama dalga mekaniği için doğru çıkış noktası idi.

Enteresan bir şekilde, 1925-1926 yılları arasında Werner Heisenberg, Max Born, Wolfgang Pauli ve Pascual Jordan, matris mekaniği ile kuantum mekaniğinin formal tanımını yaptılar. Ama formalizmlerinde dalga mekaniğine yer vermediler. Benimsedikleri felsefe ise, tamamen pozitivist idi. Yani sadece deneysel olarak gözlenebilen değerleri göz önüne alan bir yaklaşım kullandılar.

1926 yılında Erwin Schrödinger bir dizi denklemle dalga mekaniğini yeniden canlandırdı. Sonunda kendi dalga mekaniğinden Heisenberg'in matriks mekaniğini de türetip iki formalizmin matematiksel olarak denk olduğunu da gösterdi (son makalelerinden birinde Schrödinger, relativistik bir dalga denklemi de sunar).

Dirac'a göre ise tarih biraz daha farklı işlemiştir. Ona göre, Schrödinger önce relativistik dalga denklemini geliştirdi, sonra bunu kullanarak hidrojenin spektrumunu hesapladı ve deneylere uymadığını gördü. Ancak bu denklemin, düşük hızlarda geçerli olan versiyonu aslında çalışıyordu, ve bildigimiz Schrodinger dalga denklemine ulaşılıyordu.

Daha sonra relativistik dalga denklemi Oskar Klein ve Walter Gordon tarafından yayınladı ve hâlâ Klein-Gordon denklemi olarak anılır.

Bu noktadan sonra Dirac; teoriyi özel görelilikle uyumlu hale getirmiş ve bazı deneylerin sonuçlarını teorik olarak üretmiştir. Örneğin pozitron'un varlığını 1932 senesinde Carl David Anderson kanıtlamıştır ve nobel ile ödüllendirilmiştir[7]. Kuantum teorisi, daha sonra 1940'larda Sin-Itiro Tomonaga, Julian Schwinger ve Richard P. Feynman'ın kuantum elektrodinamiği konusunda önemli çalışmalarıyla gelişimine devam etmiştir. 1950'li ve 60'lı yıllar ise Kuantum renk dinamiğinin gelişimine tanık olmuştur.

Gelişmeler

Klasik mekanik, kuantum mekaniği ve kuantum mekaniği'nin matematiği

Klasik mekanik, nesnelerin konum ve momentumları bilgilerini kullanarak, çeşitli kuvvet alanları altında nasıl hareket etmeleri gerektiğini bulmaya çalışır. Kökleri çok eskiye dayansa da başlangıcının Newton'un Principia'sı olduğunu kabul etmek yanlış olmaz. Daha sonra Euler, Lagrange, Jacobi, Hamilton, Poisson, Maxwell, Boltzman (İstatiksel mekanik ve klasik elektromanyetik teori de klasik mekaniğe katılabilir) gibi birçok ad tarafından çok çeşitli bakış açıları geliştirilmiş ve birçok alanda başarılı bir şekilde uygulanmıştır. Klasik mekaniğin tamamlanmasının Einstein'ın görelilik kuramları ile gerçekleştiğini söylemek yanlış olur. Klasik mekanik çok başarılı olmasına karşın, 1800'lü yılların sonlarına doğru, siyah cisim ışıması, tayf çizgileri, fotoelelektrik etki gibi birtakım olayları açıklama da yetersiz kalmıştır. Açıklamaların yanlışlığı bilim adamlarının yetersizliğinden değil aksine klasik mekaniğin yetersizliğinden kaynaklanıyordu. Klasik mekanikteki sorunun ne olduğunu anlatmak aşırı teknik kaçacaktır, ancak en yalın halde klasik mekanik evreni sürekli olarak modeller ve bu yaklaşım kendi içinde tutarlı degildir. Bunu görmek için termodinamikteki eş-dağılım prensibine ("İngilizceequipartition theorem") bakmalıyız. Üç konum (x, y, z) ve üç momentumla (px, py, pz) tanımlanan parçacıklar, sonsuz sayıda parametreyle tanımlanan alanlarla bir aradadır. Eş-dağılım kuramınca sistemin enerjisinin, denge durumunda, sistemin tüm bileşenlerine eşit biçimde dağılması gerekir. Alanlar sonsuz bileşene sahip olduğundan bütün enerji alanlara dağılmalıdır. (Daha teknik bir ifade ile, denge durumundaki sistemde enerji, bütün özgürlük derecelerine eş olarak dağılır; alanlar sonsuz özgürülük derecesine sahip olduğu için bütün enerji alanlara akmalıdır.) Evren dengede varsayılırsa, deneysel olarak böyle bir gözlemin olmaması, klasik mekaniğin "süreklilik" paradigmasında bir soruna işaret eder.

Kuantum kuramı ise olayı bambaşka bir şekilde ele alır. Parçacıklar artık doğrudan 3 konum ve 3 momentumla tanımlanmak yerine bir "dalga fonksiyonu" ile tanımlanırlar. Bu dalga fonksiyonu parçacığın bütün bilgisini içinde barındırır ve dalga fonksiyonuna uygun "sorular" sorularak gerekli bilgi alınır. Örneğin konum bilgisi için dalga fonksiyonuna "parçacık nerede?" sorusunu sorarsınız, o ise size parçacığın soruyu sorduğunuz anda nerede olabileceğini söyler. Buradaki kritik nokta olabilirliktir. Bu, dalga fonksiyonunun bir de "olasılık fonksiyonu" olarak anılmasına neden olmaktadır. Daha sonra, bu olasılıksal durumu bilinçli olup olmama durumuna bağlayan Kopenhag Yorumu ortaya atılmıştır. (Matematik altyapısı yetersiz olanlar denklemleri görmezden gelebilirler.) Matematiksel olarak olayı şöyle tanımlayabiliriz:

parçacığı tanımlayan dalga fonksiyonumuz olsun,

integrali bize x'in beklenen değerini verir. Yukarıda bahsedilen soru sorma işlemi tam olarak böyle yapılır. Benzer şekilde momentumun beklenen değeri için;

şeklinde soruyu sorarız. dalga fonksiyonumuzun karmaşık eşleniğidir. Karmaşık eşlenik ve dalga fonksiyonu arasında kalan ifadeler gözlemlenebilirlerimizin, yani konum ve momentumun, konum uzayındaki operatörleridir. Operatörler sorunun ta kendisidir.

Konum ve momentum dışında daha birçok gözlemlenebilir ile işlem yapılabilir. Ancak konum ve momentum operatörleri kullanılarak diğer birçok operatörü elde etmek mümkündür. İşin ilginç yanı bu operatörle elde etmek için klasik formüller kullanılır. Örneğin kinetik enerji klasik mekanikte;

şeklinde tanımlanırken kuantum fiziğinde kinetik enerji operatörü yine aynı ifadeyle yazılır. Tek fark "p" artık bir sayı değil bir operatördür. Bu bize Ehrenfest teorimince sağlanır ve bütün operatörleri klasik yasaları kullanarak türetebiliriz. Bu noktada "Peki, dalga fonksiyonu nedir?" sorusuna dönmeliyiz. Dalga fonksiyonu bize Schrödinger denklemi tarafından verilen, bir bakıma parçacığın kimlik kartıdır.Bir boyutta Schrödinger denklemi;

şeklinde yazılabilir. İfade bir bakıma enerji denklemidir ve bahsi geçen "kimlik" kartını sistemin enerjisine göre verir. (Burada kimlikten kasıt, parçacığın elektron mu yoksa nötron mu olduğu değil, momentumu, konumu, kinetik enerjisi gibi gözlemlenebilirleridir.) Bu denklem çözüldüğünde parçacığımızın dalga fonksiyonunu elde etmiş oluruz. En basit atom olan hidrojen atomunun zamandan bağımsız analitik olarak çözülmesi bile zordur, neyse ki belli formalizmlerle, daha karmaşık sistemleri yaklaşımlar yaparak çözmek mümkün oluyor.

Kuantum mekaniği temelinde bir olasılık teorisidir. Dalga fonksiyonu içinde sistemin bütün olası durumlarını barındırır. Siz soruyu sorduğunuzda size en olası cevabı verir, ancak soru sorma işlemi dalga fonksiyonunu "dağıtır" ve siz bir daha sorduğunuz zaman artık başka bir cevap alırsınız. Bunun yanı sıra kuantum mekaniği yapısı ötürü belirsizlikler barındırır. Bu belirsizlikler bazı gözlemlenebiliri ne kadar iyi bilirseniz diğer bazıları hakkında o kadar az şey bileceğinizi söyler. Örneğin konum ve momentum böyle bir çift oluşturur. Birini ne kadar iyi bilirseniz diğeri hakkında o kadar az bilginiz olur. Bu Heisenberg belirsizlik ilkesi olarak bilinir. Konum ve momentum için Heisenberg belirsizlik ilkesi şöyle gösterilir:


Bu ifade de ve ile verilenler sırasıylayla konum ve momentumdaki belirsizliklerdir.

Yukarıda ele alınan kuantum mekaniği, öklidyen bir uzayda çalışılmış kuantum mekaniğidir, diğer bir deyişle göreceli değildir. Einstein'ın özel görelilik kuramına uyan bir kuantum mekaniği türetmek mümkündür. Hatta ilk bakışta kolay bir uğraştır. Kuantum fikrine ve özel göreliliğe biraz aşina olan biri bile çözüme kolayca ulaşır. Yukarıda değinilen Schrödinger denklemini daha sade bir formda şöyle ele alabiliriz:

Burada H olarak verilen Hamiltonian operatörüdür. (Toplam enerji olarak düşünülebilir.) Relativistik olmayan serbest parçacık (potansiyel enerji sıfır) için Hamiltonian:

Görünüm: Liste / Tablo
Göster:
Sırala:
Bu Gerçek Olamaz  Kuantum Fiziği Çift Yarık Deneyi   ..
0,00TL
Einstein ın Kabusu Kuantum Dolanıklığı ve Malum Kedi   ..
0,00TL
Her Şeyi Unut! - Kuantum Fiziği: Başlangıç   ..
0,00TL
Her Şeyin Teorisi Quantum Fiziği Pelin Batu ile Bunu Bilin İstedim   ..
0,00TL
Kuantum Alan Teorisi: Her Şeyin Teorisi     ..
0,00TL
KUANTUM BİLGİSAYARLARI Sınırsız Gücün Anahtarı   ..
0,00TL
Kuantum İnterneti - Geleceğin İnterneti   ..
0,00TL
Sen Ölümsüzsün Kuantum Ölümsüzlüğü ..
0,00TL